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Dirac materials
I systems (mostly in cond.mat.), where low-energy spectrum has linear

dependence on the momentum - dynamics is well approximated by 2D or 1D
Dirac equation!

2D stationary equation (for interactions changing smoothly on the interatomic distance and preserving spin)[
V (x , y) + M(x , y) Πx − iΠy

Πx + iΠy V (x , y)−M(x , y)

]
Ψ = E Ψ

where
Πx = −i∂x + Ax(x , y), Πy = −i∂y + Ay (x , y)

I interesting toy for mathematical physicists!

Relevant in description of surprising variety of physical systems

I Andreev approximation of BdG equations of superconductivity,
high-temperature d-wave superconductors, superfluid phases of 3He

I low-dimensional models in quantum field theory (GN,...)
I condensed matter systems where low-energy quasi-particles behave like

massless Dirac fermions



Graphene and its cousins

I graphene, silicene, germanene, stanene, h-BN, dichalcogenides
Trivedi, J. Comp. Theor. NanoSci. 11, 1 (2014)

dichalcogenides

low-energy approximation of TBM of hexagonal lattice with
nearest neighbor interaction, Hasegawa, PRB74, 033413



Artificial graphene

I artificial graphene - ultracold atoms in optical lattices, CO molecules
assembled on copper surface, drilling holes in hexagonal pattern in
plexiglass...

Manoharan, Nature 483, 306 (2012) Tarruell, Nature 483, 302 (2012) Torrent,PRL108,174301

Dirac materials - rapidly expanding ZOO of physical systems!



1D Dirac Hamiltonian - qualitative spectral analysis
Spectral properties of the Hamiltonian

h = (−iσ1∂x + W (x)σ2 + Mσ3)

with

lim
x→±∞

W (x) = W±, lim
x→±∞

W ′(x) = 0, |W−| ≤ |W+|.

Sufficient conditions for existence of bound states in the spectrum
(VJ,D.Krejčǐrik Ann.Phys.349,268 (2014)), e.g.:
”When ∫ ∞

−∞
(W 2 −W 2

−) < 0,

then the Hamiltonian has at least one bound state with the energy

E ∈
(
−
√

W 2
− + M2,

√
W 2
− + M2

)
.”

Question: What kind of observable phenomena can be attributed to the
bound states? Let’s make wave packets!



Absence of dispersion in the systems with translational
invariance

Mathematical abstraction of the setting (forget about Dirac
operator for now):

I translational invariance
Let’s have a (generic) Hamiltonian H(x , y) that commutes
with the generator of translations k̂y = −i~∂y ,

[H(x , y), k̂y ] = 0.

After the partial Fourier transform Fy→k , the action of the
Hamiltonian can be written as (direct integral decomposition)

H(x , y)ψ(x , y) = (2π~)−1/2

∫
R

e
i
~kyH(x , k)ψ(x , k)dk,

where H(x , k) = Fy→kH(x , y)F−1
y→k , and

ψ(x , k) = Fy→kψ(x , y) = (2π~)−1/2

∫
R

e−
i
~kyψ(x , y)dy .



I discrete energies for fiber operators
Assume H(x , k) has a non-empty set of discrete eigenvalues
En(k) for each k ∈ Jn ⊂ R. The associated normalized bound
states Fn(x , k) satisfy

(H(x , k)− En(k))Fn(x , k) = 0, k ∈ Jn.

We make a “linear combination” composed of Fn(x , k) with
fixed n

Ψn(x , y) = (2π~)−1/2

∫
In

e
i
~kyβn(k)Fn(x , k)dk

where βn(k) = 0 for all k /∈ In ⊂ Jn. Ψn is normalized as long
as
∫
In
|βn(k)|2dk = 1.



I Suppose that En(k) is linear on In,

En(k) = en + vnk, k ∈ In.

Then Ψn evolves with a uniform speed without any dispersion,

e−
i
~H(x ,y)tΨn(x , y) = cn(t)Ψn(x , y − vnt), |cn(t)| = 1.

Indeed, we have

e−
i
~H(x ,y)tΨn(x , y) = (2π~)−1/2

∫
In

e
i
~kye−

i
~H(x ,k)t(βn(k)Fn(x , k))dk

= e−
i
~ ent(2π~)−1/2

∫
In

e
i
~k(y−vnt)βn(k)Fn(x , k)dk

= e−
i
~ entΨn(x , y − vnt).

I independent on the actual form of H(x , k)
I can be generalized to higher-dimensional systems with the

translational symmetry
I simple observation relevant for Dirac materials!



Realization of dispersionless wave packets
Linear dispersion relation - hard to get with Schrödinger operator, but
available in Dirac systems
We fix the Hamiltonian in the following form

H(x , y) = vF τ3 ⊗
(
−i~σ1∂x − i~σ2∂y +

γ0

vF
m(x)σ3

)
,

whose fiber operator reads

H(x , k) = vF τ3 ⊗
(
−i~σ1∂x + kσ2 + γ0

vF
m(x)σ3

)
.

Structure of bispinors: Ψ = (ψK ,A, ψK ,B , ψK ′,B , ψK ′,A)T

Topologically nontrivial mass term: limx→±∞m(x) = m±, m+m− < 0

Mass term arises when sublattice symmetry is broken

Drummond et al, PRB 85, 075423 (2012)
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Then H(x , k) has two nodeless bound states localized at the
domain wall where the mass changes sign Semenoff, PRL 101,87204 (2008).

F+(x) ≡ F0(x , k) = (1, i , 0, 0)T e
− γ0

~vF

∫ x
0 m(s)ds

,

F−(x) ≡ τ1 ⊗ σ2 F+(x) = (0, 0, 1, i)T e
− γ0

~vF

∫ x
0 m(s)ds

.

They satisfy
H(x , k)F±(x) = ±vFkF±(x).

As F±(x) do not depend on k , the nondispersive wave packet can
be written as

Ψ±(x , y) = F±(x)G±(y),

where G±(y) are arbitrary square integrable functions

I There are two counterpropagating dispersionless wave packets,
one for each Dirac point (valleytronics)



Slowly dispersing wave packets
Assume the dispersion relation E = E (k) is not linear. We define

B(k) = En(k)− (e + vk), k ∈ In,

where e and v are free parameters so far.
We are interested in the transition probability

A(t) = |〈Ψn(x , y − vt), e−
i
~H(x ,y)tΨn(x , y)〉|2

=

∫
In×In

dkds|βn(k)|2|βn(s)|2 cos
(

(B(k)− B(s))
t

~

)
Let us find the lower bound of A(t)

A(t) ≥ inf
(k,s)∈In×In

cos
(

(B(k)− B(s))
t

~

)
≥ 1− t2

2~2
sup

(k,s)∈In×In
(B(k)− B(s))2 ≥ 1− 2t2

~2
sup
k∈In
|B(k)|2.

We set average speed v =
∫
In
E ′
n(k)dk

b−a = En(b)−En(a)
b−a , and e such

that supk∈In(En(k)− vk − e) = − infk∈In(En(k)− vk − e).



Example
The fiber Hamiltonian is

H̃K (x , k) = −iσ1∂x − ωα tanh(αx)σ2 + kσ3.

The solutions of stationary equation are

H̃K (x , k)F̃±n (x , k) = ±En(k)F̃±n (x , k),

F̃±n (x , k) =

(
1 0
0 ε±(k, n)

)(
1 +

H̃K (x , 0)

En(0)2

)(
fn(x)

0

)
,

En(k) =
√

n(−n + 2ω)α2 + k2

where we denoted ε±(k , n) = En(0)

±
√

En(0)2+k2+k
and

fn(x) = sech−n+ω(αx)2F1

(
−n, 1− n + 2ω, 1− n + ω,

1

1 + e2αx

)
.

The zero modes are (H̃(x , k)− k)F̃+(x) = 0, F̃+(x) = (sechω(αx), 0)T .



β1(k) = Cb exp
(
− 1

b2−(k−c)2

)
, β1(k) = 0 for k 6= (c − b, c + b).

Ψ̃1 =

∫
I1

e ikyβ1(k)F̃ +
1 (x , k)dk , Ψ̃+ = F̃+(x)

∫
I1

e ikyβ1(k)dk,



Discussion and Outlook

I insight into experimental data (e.g. existence of slowly dispersing
wave packets in bilayer graphene ”highways”)

Martin et al, PRL100,036804 (2008)

I realization of quantum states following classical trajectories seeked
already by Schödinger (free particle Berry, Am. J. Phys. 47, 264 (1979), Trojan
states for Rydberg atoms Bialnicki-Birula et al, PRL 73,1777 (1994))

I experimental preparation of the disperionless wave packets requires
precise control of quantum states: achieved by laser pulses for
Rydberg atoms (Weinacht, Nature 397 (1999), 233; Verlet, Phys. Rev. Lett. (2002) 89, 263004)

generalizations

I improvements of estimates for slowly dispersing wp (lower bound for
transition amplitude, weighted group velocity of the packet)

I extension to other geometries
I (geometrically) imperfect systems, crossroads


